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Figure 1: Our proposed Aesthetic Dashboard: in the left-up conner, the overall aesthetic score and the aesthetic attribute radar
map (light, composition, color) are shown. Using this sub-dashboard, the novices can simply adjust their shooting according to
the scores, the higher the better. In the right part, more complicated aesthetic attribute dashboards are shown. The amateurs or
professional users can refer the template matching scores to obtain the desired patterns of light, color and composition. For
portraits we also show the guidance of face light, body pose and the garment color, see the supplementary material.

ABSTRACT
Nowadays, almost everyone can shoot photos using smart phones.
However, not everyone can take good photos. We propose to use
computational aesthetics to automatically teach people without
photography training to take excellent photos. We present Aesthetic
Dashboard: a system of rich aesthetic evaluation and guidance for
mobile photography. We take 2 most used types of photos: land-
scapes and portraits into consideration. When people take photos
in the preview mode, for landscapes, we show the overall aesthetic
score and scores of 3 basic attributes: light, composition and color
usage. Meanwhile, the matching scores of the 3 basic attributes of
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current preview to typical templates are shown, which can help
users to adjust 3 basic attributes accordingly. For portraits, besides
the above basic attributes, the facial appearance, the guidance of
face light, body pose and the garment color are also shown to the
users. This is the first system that can teach mobile users to shoot
good photos in the form of aesthetic dashboard, through which,
users can adjust several aesthetic attributes to take good photos
easily.
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1 INTRODUCTION
Taking a photo is quite convenient by using smart phones. Trillions
of photos are taken everyday by our smart phones. The resolution
of these photos are getting higher. However, most of users have
not been trained on photography. They do not know how to shot a
good photo by choosing appropriate composition, light or color.

Recently, several assistance systems [7, 13–15] for mobile pho-
tography and aesthetic assessment methods [4, 5, 9] are proposed.
Rawat et al. [13] use photos from social media to suggest the best
shooting place and angle for mobile photography. The shot sug-
gestion function of Samsung Galaxy S10 [14] shows the guidance
line and circle to guide users to obtain good composition. Google
proposes camera view adjustment prediction [15] for improving
photo composition for mobile photography. The PicMe system pro-
posed by Kim et al. [7] use interactive visual guidance for taking
requested photo composition by another user.

Most of the related shooting assistance systems only consider
simple composition guidance. None of them explicitly show the
aesthetic scores of both the overall and the aesthetic attributes. We
propose the aesthetic dashboard which shows the rich aesthetic
evaluation and guidance for the mobile users to shoot excellent
photos. Using our aesthetic scores, the novices can simply adjust
their shooting according to the scores, the higher the better. The
amateurs or professional users can refer the template matching
scores to obtain the desired patterns of light, color and composition.
For portraits, we also show facial appearance and the guidance of
face light, body pose and the garment color.

2 AESTHETIC DASHBOARD
2.1 Landscapes
2.1.1 Overall Aesthetic Score. We use a multi-task network struc-
ture with Efficientnet [16] as the backdone network to extract aes-
thetic depth features of landscape images, We extract aesthetic
abstract features through aesthetic total score ten-class training.
Then we fuse the handcraft features of various attributes in the
multi-task network and obtain the aesthetic total-score of the image
according to the regression training.

2.1.2 Attributes Score. In terms of attributes scoring, we obtain
aesthetic abstract feature maps from total score training. Combining
the channel attention [18], we extract abstract features for compo-
sition, light and color. In addition, we further process these features
and each finally contains feature of 10 dimensions. In the process of
attribute regression, we add a small number of hand-craft features
to the final full connection layers, Finally, we incorporate these
hand-craft features into the 10 high-dimensional attribute features
for the regression of attribute scores, The results are presented in
the form of the radar graph.

2.1.3 Composition Templates. We summarize ten common compo-
sition templates. They are: gold section, central composition, slkew
composition, triangle composition, guide line, rule of thirds, sym-
metrical composition, Diagomal Composition, frame composition
and round composition, For each landscape image, we preprocess
it through the silent area detection [12] and edge extraction [12],
then we obtain the composition information according to the center
location of the silent area, the primal sketch [3] and circle area.

2.1.4 Light Templates. We use the solar-sky model [10] to display
outdoor illumination distribution information. We divided the sky
into 32 different regions in the range of level 360 degrees and obtain
the solar probability for the forward light, side light, back light and
side back light.

2.1.5 Color Templates. We use the color harmony model [2] to
display the color distribution. We divide the histogram according
to the hue channel in HSV, and calculate the different harmonious
color models in type i, V, L, I, T, Y, X and N of color harmony. Finally,
we calculate the average and maximum of hue in different templates
to evaluate the color matching degree.

2.2 Portraits
2.2.1 Overall Aesthetic Score. We got the overall aesthetic score by
integrating four attributes including lighting, composition, color
and appearance.

2.2.2 Composition Score. We calculated seven composition fea-
tures of the picture, including trisection, golden section, diagonal,
central composition, triangle composition, L-shape composition
and symmetrical composition. The composition score is calculated
according to the correlation between the image and the composi-
tion template. We used the Efficient-Det [17] to get the portrait
rectangle.

2.2.3 Light Score. We divide the image into 64 pieces and the
portrait into 8 pieces to calculate the lighting features. And the
features are used as input of neural network to train in the data set
of AADB [8], PCCD [1], EVA [6], PADB to get the light score.

2.2.4 Color Score. We divide the image into 64 blocks and count
the color features. Then we use neural network to train on the
attribute data set to get the color score.

2.2.5 Composition Templates. The composition templates used in
this demo include trisection, golden section, diagonal, center compo-
sition, triangle composition, L-shape composition and symmetrical
composition.

2.2.6 Light Templates. We used DPR [20] to get the radiance map
we need. The lighting templates used in this demo include butterfly
light, side light and Rembrandt light.

2.2.7 Pose Templates. This demo collects a number of commonly
used pose as pose templates to guide shooting. And we used the
detectron2 [19] to get the skeleton.

2.2.8 Appearance. This demo uses the neural networkmodel trained
on the SCUT-FBP5500 [11]
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